

Kline's Island Sewer System

1. Overview 2. Inflow & Infiltration (I&I) Projects

LCA Board of Directors – February 27, 2023

Abbreviations & Definitions

KIWWTP – Kline's Island Wastewater Treatment Plant (Allentown)

- KISS Kline's Island Sewer System all municipal systems and facilities that connect to the KIWWTP
- AO Administrative Order issued by EPA in 2007 and 2009 related to sewer overflows and plant bypasses during wet-weather events
- **SSO** Sanitary sewer overflow
- EPA U.S. Environmental Protection Agency
- DEP Pa. Department of Environmental Protection
- MGD Million Gallons per Day

RFMS – Regional Flow Management Strategy – a plan submitted in 2018 to DEP & EPA, which resulted in the AO being lifted

CMP – Connection Management Plan – a DEP-approved plan to manager new sewer connections while corrective actions are being taken

Act 537 Plan – Sewage facilities plan outlining current system requirements and detailed alternatives for meeting future needs

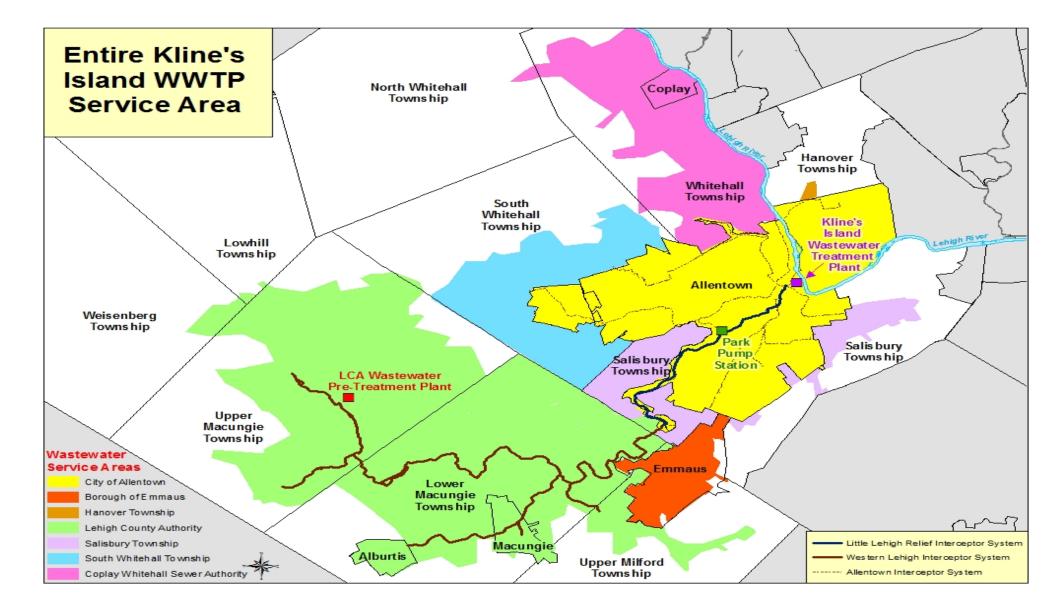
I&I – Inflow & Infiltration – refers to clear water entering the sewer system through leaks, unauthorized connections, etc.

RDII – Rainfall-Derived I&I, which is a major driver for wet-weather overflows and hydraulic overloads at the KIWWTP

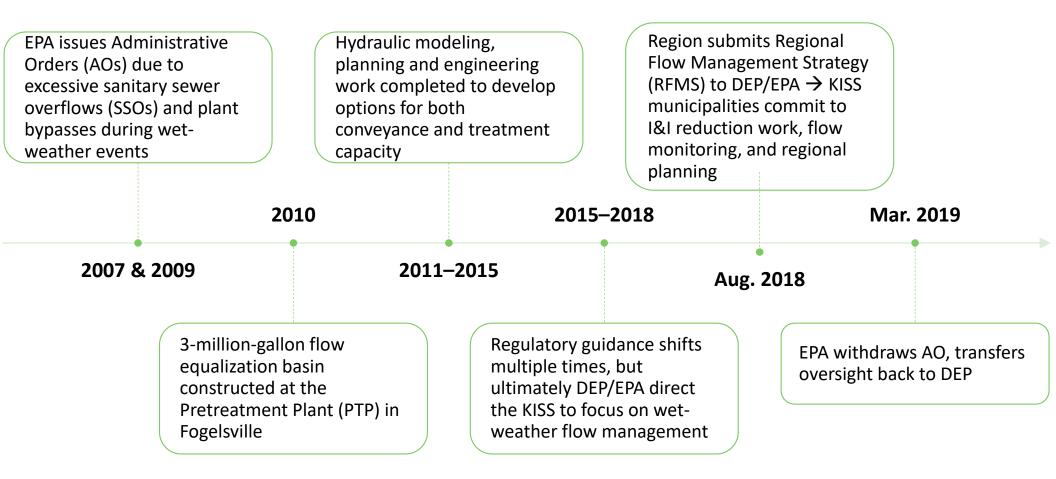
- PTP LCA Industrial Pretreatment Plant (Fogelsville)
- WLI Western Lehigh Interceptor, owned by LCA and transporting sewage from western Lehigh County to the KIWWTP
- WLSP Western Lehigh Sewerage Partnership the communities served by the WLI

SBM – Sewage Billing Meters – permanent sewer flow meters used for calculating bills to municipalities

Kline's Island Sewer System (KISS)

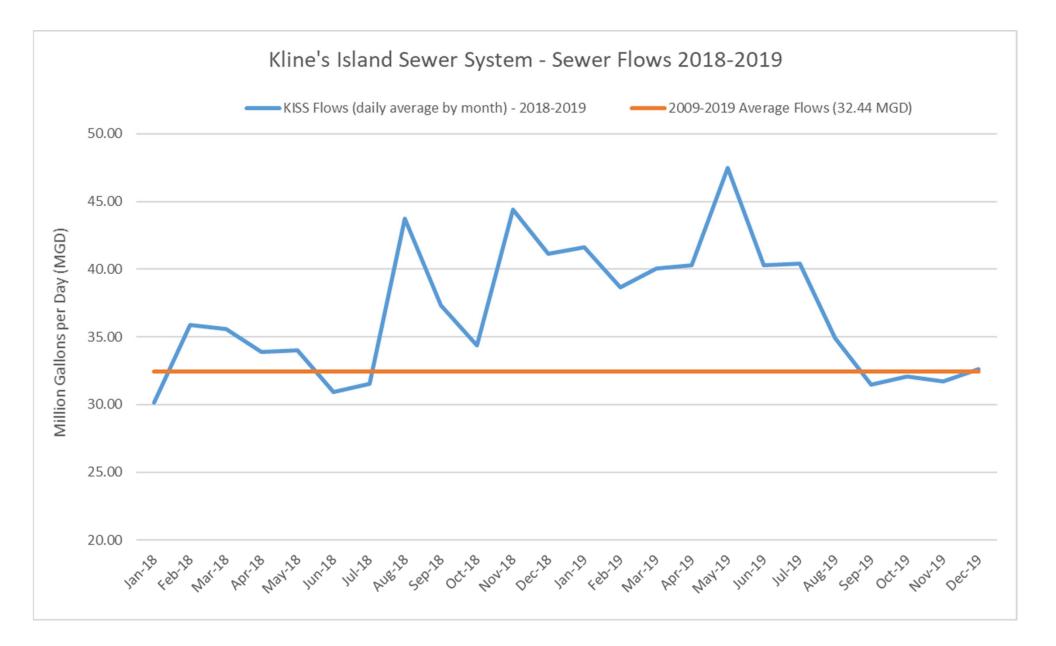

LCA / Western Lehigh Sewerage Partnership

- Upper Macungie
- Lower Macungie
- Macungie
- Alburtis
- Upper Milford -
- Weisenberg
- LCA-owned systems

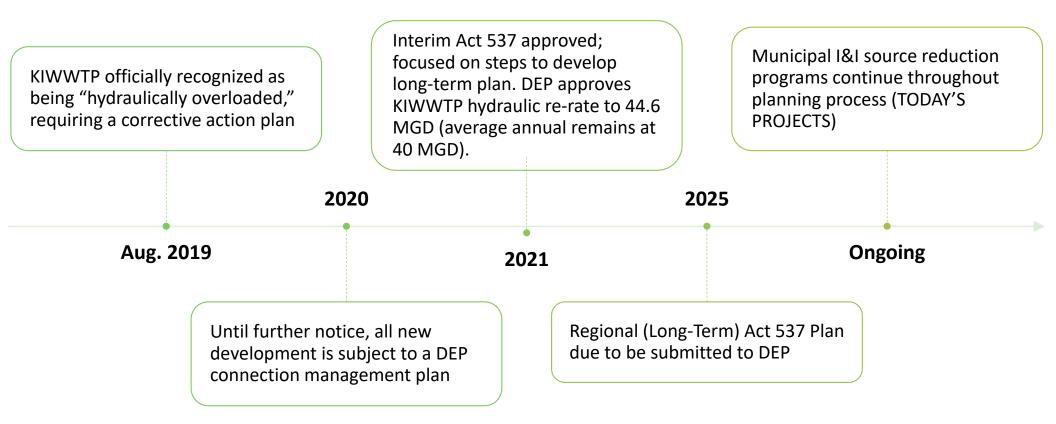

• Lowhill

Allentown / City Signatories

- LCA / WLSP
- South Whitehall
- Salisbury
- Coplay-Whitehall Sewer Authority
 - North Whitehall
 - Whitehall
 - Coplay
- Emmaus
- Hanover



Brief History – "The AO Era" (2009-2019)



2018-2019: "The Wet Years"

August 2018-July 2019: Region receives 80" of rain (compared to 45" normal) KISS flows >40 MGD over multiple months (officially in "hydraulic overload")

2019 Forward: "The Collaboration Era"

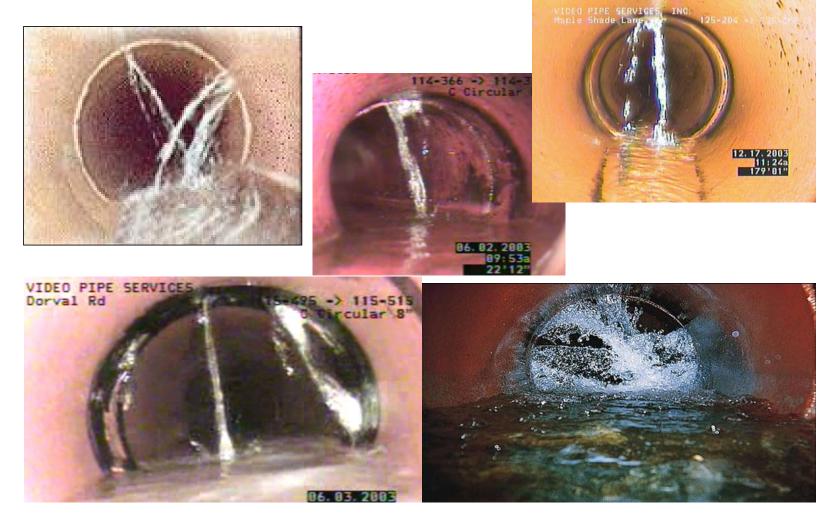
Goals for a Regional Act 537 Plan

- Support environmental and economic goals of the region
- Solutions must be regional and comprehensive
- Ensure existing infrastructure is maintained / rehabilitated – focus first on reducing I&I
- Long term sewer capacity needs quantified through 2050
- Develop plan for new infrastructure to meet region's future needs (project period through 2035)

Keys to Success

- Aggressive schedule requires extensive intermunicipal cooperation
- Continued engagement with DEP
- Regional approaches will be most cost effective
- Significant planning and engineering required between now and 2025
- Public communication to drive understanding and support for projects and rate impact

Break for questions?

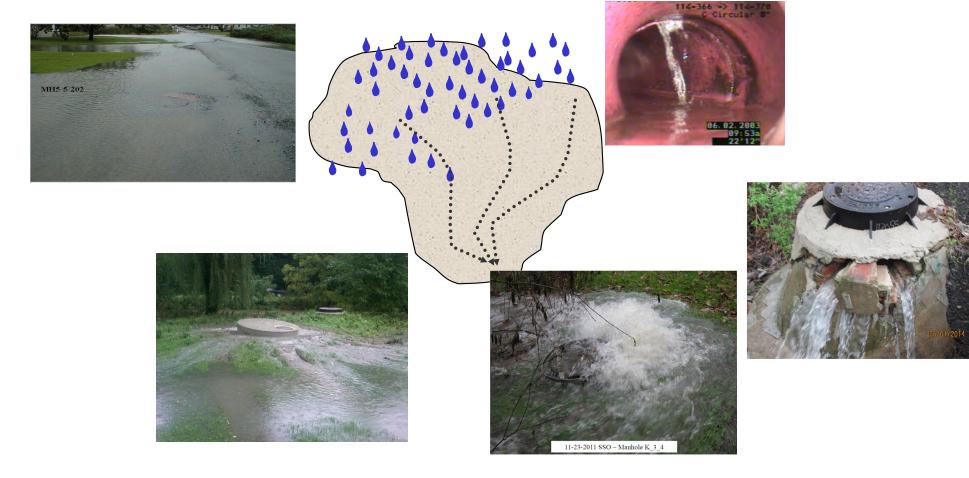

Today's Focus: Inflow & Infiltration Projects

- 1. Western Lehigh Municipalities, working together
- 2. City of Allentown Regional Flow Management Strategy, final phase
- 3. City of Allentown NEW I&I Source Reduction Program, kickoff

INFILTRATION AND INFLOW (1&1)

- 1. Infiltration Groundwater flow into pipes and/or manholes through defects and failed gaskets
- Inflow Stormwater flow directly into manholes and cleanouts
- 3. Clearwater Roof drains and sump pumps connected to sanitary sewer pipes.

INFILTRATION

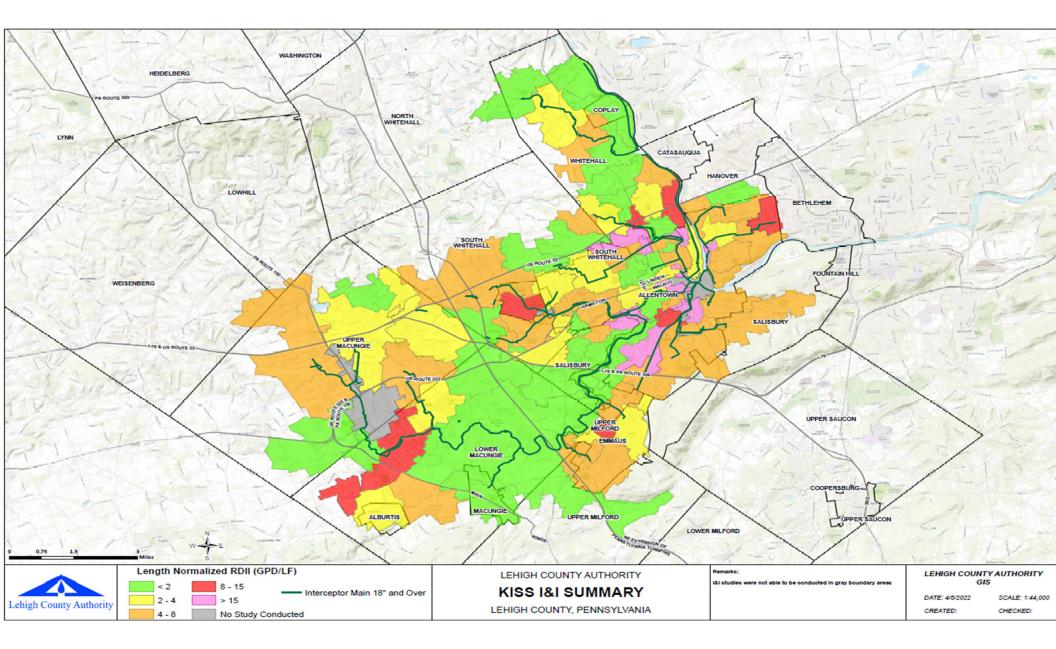

INFLOW

Leakage Originates in the Collection System... but Overflows in the Interceptor

Where Overflows Occur

"Outfall 003" at the Allentown treatment plant – discharges to Little Lehigh Creek approximately 100 yards upstream of confluence of Lehigh River.

Manholes along the Little Lehigh Creek and other locations in the system.


Basement backups when smaller lines are full or bottlenecks occur.

Interim Act 537 Plan: Work Schedule

Work Categories & Description	Start	Finish
Work Categories & Description Immediate: Sewage Billing Meter (SBM) Upgrades & data validation / capture method Defined scope and meter placement for Flow Characterization Study Agreement on Cost-Sharing for Planning work Municipal Flow Projections → 2050	Start As soon as possible	Finish December 2020 * Timing required to design flow metering program
 Part 2 Permit Resubmission for the KIWWTP hydraulic rerate 		
Preliminary: Preliminary Treatment Alternatives Evaluation –Resolve concepts with preliminary regulatory and engineering evaluation so signatories can review impacts to inter-municipal agreements, cost-sharing, etc.	As soon as possible	September 2021 * Timing required to have inputs available for flow modeling work
Flow Monitoring & Model Calibration: Flow Monitoring Rainfall Monitoring RDII Characterization KISS Model Calibration Preliminary modeling of alternatives Update treatment alternatives analysis	January 2021	June 2022
Trexlertown Special Planning Study: Develop Alternatives Select Alternative Pre-Planning Meeting with PADEP Develop Special Planning Study Submit Special Planning Study Prepare Part II Permit Application	January 2021	January 2023

Interim Act 537 Plan: Work Schedule

Administrative Issues: Inter-Municipal Agreements	September 2021	June 2024
 Discuss Regional Approach Develop Cost Sharing Agreement 		
Atternatives Analysis: KIWWTP vs. Pretreatment Plant Storage vs. conveyance/pumping alternatives Peak flow capacity alternatives I&I removal impacts on alternatives Preliminary cost estimates	June 2022	June 2023
Selection of Preferred Alternative: Detailed cost estimates Address impact to inter-municipal agreements Develop implementation schedule Stakeholder input	June 2023	June 2024
Act 537 Plan Development (Write the plan)	June 2024	September 2024
Public Notice & Municipal Adoptions	September 2024	February 2025
Final Submission		March 2025

Statistics by Basin

Meter	1.14	titler Henestary	why full, her	Radici			-			LINES CAN	North Links	North 1215	-	North Mb	Cost.		KORDAN	-	MINICAL INC.	NON		ITRAFT S		-	red Creek			UTTU CHEAR	Carlancest Med	-	IT. REMOUND	NAL DAL	and the second	-	NUNTAIN LA	
Signatory	City	y City	Ch	City	City	City	City	City	City	City	City	City	City	City	City	City	City	City	City	City	City	City+ST	City	City	City	City	City	City	City	City	City	City+ST	City+ST	City	City	City
Parcels	426	6 1,223	584	627	263	582	1,707	832	3,154	329	1,935	516	412	443	752	432	57,915	447	1,876	630	204	1,365	825	227	3,108	780	849	388	1,095	287	1,241	462	157	1,978	426	353
Basin Length (LF)	48,68	3 59,725	25,18	6 36,318	9,059	11,651	64,042	41,990	124,566	14,633	48,091	10,369	23,509	12,585	19,914	18,509	57,915	10,851	49,094	27,725	11,428	63,689	55,875	26,815	141,700	32,229	39,222	40,306	75,410	15,894	83,039	35,573	20,987	59,512	30,066	8,685
Dry Weather GPD/EDU	347	7 268	299	9 296	440	548	260	235	205	322	177	232	641	501	170	377	242	412	127	241	378	310	218	273	364	603	676	1598	201	488	338	303	4346	278	1408	227
Average Dry Weather Flow, DWF (MGD)	0.772	0.328	0.175	0.72	0.116	0.319	0.443	0.195	0.647	0.106	0.343	0.12	0.264	0.222	0.128	0.163	0.63	0.184	0.239	0.304	0.077	0.424	0.327	0.88	1.293	0.47	0.676	0.62	0.22	0.14	0.42	0.14	0.682	0.55	0.6	0.08
Baseline Infiltration % adjusted for data issues	63%	36%	653	44%	63%	31%	30%	35%	40%	40%	61%	38%	38%	60%	57%	33%	39%	33%	33%	31%	31%	46%	19%	40%	58%	51%	53%	76%	18%	47%	47%	47%	30%	31%	25%	13%
Baseline Infiltration (MGD)	0.502	0.118	0.114	0.317	0.075	0.163	0.133	0.068	0.259	0.042	0.209	0.046	0.100	0.133	0.073	0.090	0.246	0.061	0.079	0.094	0.024	0.195	0.062	0.352	0.750	0.240	0.358	0.471	0.040	0.066	0.197	0.066	0.205	0.171	0.150	0.010
Average Peaking Factor adjusted for data issues	5.0	12.7	6.0	7.3	27.6	3.0	6.2	6.0	4.1	3.4	2.3	2.3	6.7	7.0	5.1	7.7	2.4	2.2	7.5	3.2	8.0	3.5	5.1	2.9	4.0	3.4	4.6	6.0	43	4.0	6.0	13.4	5.8	3.4	3.0	5.2
Length Normalized RDII (GPD/LF)	4.3			2.8	53.4	7.1		23	2.6	6.6	13	1.9	4.8	28.3	6.2	18.4	1.6	1.6	24	2.5	52	3.4	5.6	15.8	4.7	8.5	19.8	10.1	2.1		4.7	7.3	36	3.8		7.9
(dro/ur)		a. (
(aro)a)		9 <u>6.</u> 7																																		
	PT0-0818	17753 129005_54	SSA COM	US Durney	19611. 1	-	1473	1954	294733	1973 -		1730	ITI Surregale	m	0.000	#5-UKLA	teritari teritari	08.113		an de la composition de la composition Na composition de la co	Northall West_Set	anglus Park		-ter, ter	and the second second		Salar Carl	Machthar 2	Palmant, Nat	ten 10. jur	terden_tert	85	10,54			14
Meter	City	unos ter	SEAX CHEE C_SML		nen, SWT	swt				incine SWT	чалан г НТ	erte ST	ETL Surrugate ST	m ST	ujanjan pravj ST	**3+(182.8 ST	CWSA	CALLS	CSWA	CSWA	Martun Kartun	CSWA	CSWA	cswa	CSWA	CSWA	CSWA		CSWA	CSWA	CM Annian_Net CSWA	es EB	HUJUA EB	EB	u u	nta EB
Meter Signatory Parcels	City 1,055	y City 5 251	SWI	SWT	swaa SWT	switz SWT 1,025	SWT 1,311	SWT 2,418	SWT 800	SWT 487	налааны НТ 237	ST 1,687	ST 566	m ST 390	ST 1,001	ST 1,055	CWSA 1,535	CSWA 1,454	CSWA 623	CSWA 831	CSWA 672	CSWA 701		CSWA 757	CSWA 708	CSWA 646	CSWA 647	CSWA 864	CSWA 87		633	EB 253	EB 337	EB 1,310	80 90 E8 227	54a EB 1,937
Meter Signatory Parcels Basin Length (LF)	City	y City 5 251 8 20,278	SW1	- 1,043 6 22,964	19811 SWT 667 44592	1,025	SWT 1,311 72,963	SWT 2,418 168,942	SWT 800 71,764	SWT 487 31,158	20,384	ST 1,687 104,982	566 32,860	ST 390 40,862	5T 1,001 34,414	ST 1,055	CWSA 1,535 73,780	CSWA 1,454 83,665	CSWA 623 42,100	CSWA 831 56,778	CSWA 672 46,901	CSWA 701 40,493	CSWA 745 53,472	CSWA 757 47,775	CSWA 708 43,946	CSWA 646 32,089	CSWA 647 29,896	CSWA 864 40,047	CSWA 87 8,191	CSWA 966 47,742	633 49,937	EB 253 11,444	EB 337 17,737	EB 1,310 68,562	15,447	99,644
Meter Signatory Parcels Basin Length (LF) Dry Weather GPD/EDU	City 1,055	y City 5 251	SW1	- 1,043 6 22,964	19811 SWT 667 44592	1,025	SWT 1,311 72,963	SWT 2,418 168,942	SWT 800 71,764	SWT 487 31,158	20,384	ST 1,687	ST 566	ST 390	5T 1,001 34,414	ST 1,055	CWSA 1,535	CSWA 1,454 83,665	CSWA 623	CSWA 831	CSWA 672 46,901	CSWA 701	CSWA 745	CSWA 757	CSWA 708	CSWA 646	CSWA 647	CSWA 864 40,047	CSWA 87 8,191	CSWA 966 47,742	633	EB 253	EB 337	EB 1,310 68,562 280		
Meter Signatory Parcels Basin Length [LF] Dry Weather GPD/EDU Average Dry Weather Flow, DWF (MSD)	City 1,055	y City 5 251 8 20,278	5W1 15,526 4350	1,043 6 22,964 0 268	switt SWT 5667 44,592 281	1,025	SWT 1,311 72,963 188	SWT 2,418 168,942 298	SWT 800 71,764 338	SWT 487 31,158 381	20,384	ST 1,687 104,982	566 32,860	ST 390 40,862	ST 1,001 34,414 258	ST 1,055	CWSA 1,535 73,780	CSWA 1,454 83,665 128	CSWA 623 42,100	CSWA 831 56,778	CSWA 672 46,901 199	CSWA 701 40,493	CSWA 745 53,472	CSWA 757 47,775	CSWA 708 43,946	CSWA 646 32,089	CSWA 647 29,896	CSWA 864 40,047 204	CSWA 87 8,191 1006	CSWA 966 47,742 273	633 49,937 217	EB 253 11,444	EB 337 17,737 327	280	15,447	99,644
Meter Signatory Parcels Basin Length (LF) Dry Weather GPD/EDU Average Dry Weather Flow, DWF (MGD) Baseline Infitration % odjusted for dato issues	City 1,055	y City 5 251 8 20,276 1673	5W1 15,526 4350	T SWT - 1,043 6 22,964 0 268 0 0.28	SWIL SWT 667 44,592 281 0.19	1,025 65,448 165	SWT 1,311 72,963 188 0.246	SWT 2,418 168,942 298 0.72	SWT 800 71,764 338 0.27	SWT 487 31,158 381 0.442	20,384	57 1,687 104,982 539	566 32,860 264 0.15	5T 390 40,862 649	ST 1,001 34,414 258	ST 1,055	CWSA 1,535 73,780 148	CSWA 1,454 83,665 128	CSWA 623 42,100 431	CSWA 831 56,778 339	CSWA 672 46,901 199 0.134	CSWA 701 40,493 168	CSWA 745 53,472 327	CSWA 757 47,775 126	CSWA 708 43,946 179	CSWA 646 32,089 239	CSWA 647 29,896 298	CSWA 864 40,047 204	CSWA 87 8,191 1006 0.088	CSWA 966 47,742 273	633 49,937 217	253 11,444 268	EB 337 17,737 327	280	15,447 220	99,644 253
Meter Signatory Parcels Basin Length (LF) Dry Weather GPO/EDU Average Dry Weather Flow, DWF (MGD) Baseline infiltration % Giusted for data issues Baseline infiltration (MGD)	City 1,055	y City 5 251 8 20,276 1673	SW1 15,52 4350 1005	T SWT 1,043 6 22,964 0 268 5 0.28 5 0.28	SWT 5WT 667 44,592 281 0.19 465	1,025 65,448 165 0.17	SWT 1,311 72,963 188 0.246 30%	SWT 2,418 168,942 298 0.72 25%	SWT 800 71,764 338 0.27 26%	SWT 487 31,158 381 0.442 44%	20,384 277 0.066 17%	51 1,687 104,982 539 0.637	51 566 32,860 264 0.13 475	51 390 40,862 649 0.253	5T 1,001 34,414 258 0.661 32%	5T 1,055 48,511	CWSA 1,535 73,780 148 0.228	CSWA 1,454 83,665 128 0.186	CSWA 623 42,100 431 0.262	CSWA 831 56,778 339 0.282	CSWA 672 46,901 199 0.134 415	CSWA 701 40,493 168 0.118 27%	CSWA 745 53,472 327 0.243	CSWA 757 47,775 126 0.096	CSWA 708 43,946 179 0.127	CSWA 646 32,089 239 0.154	CSWA 647 29,896 298	CSWA 864 40,047 204 0.176 18%	CSWA 87 8,191 1006 0.088 40%	CSWA 966 47,742 273 0.264 18%	633 49,937 217 0.138 45%	EB 253 11,444 268 0.068	EB 337 17,737 327 0.107	280 0.367 21%	15,447 220 0.05	99,644 253
Meter Signatory Parcels Basin Length (LF) Dry Weather GPD/EDU Average Dry Weather Flow, DWF (MSD) Baseline Infitration % odjusted for data issues Baseline Infitration	City 1,055	y City 5 251 8 20,278 1673 0.42 8 35%	SW1 15,52 4350 1005	T SWT 1,043 6 22,964 0 268 5 0.28 5 0.28	swn. SWT 8 667 44,592 281 0.19 46% 0.087	1,025 65,448 165 0.17 29%	SWT 1,311 72,963 188 0.246 30%	SWT 2,418 168,942 298 0.72 25%	SWT 800 71,764 338 0.27 26% 0.070	SWT 487 31,158 381 0.442 44%	20,384 277 0.066 17%	51 1,687 104,982 539 0.637 515	51 566 32,860 264 0.13 475	5T 390 40,852 649 0.253 36%	5T 1,001 34,414 258 0.661 32%	5T 1,055 48,511	CWSA 1,535 73,780 148 0.228 35%	CSWA 1,454 83,665 128 0.186 18%	CSWA 623 42,100 431 0.262 43%	CSWA 831 56,778 339 0.282 415	CSWA 672 46,901 199 0.134 415	CSWA 701 40,493 168 0.118 27%	CSWA 745 53,472 327 0.243 27%	CSWA 757 47,775 126 0.096 27%	CSWA 708 43,946 179 0.127 27%	CSWA 646 32,089 239 0.154 31%	CSWA 647 29,896 298 0.193 465	CSWA 864 40,047 204 0.176 18%	CSWA 87 8,191 1006 0.088 40%	CSWA 966 47,742 273 0.264 18%	633 49,937 217 0.138 45%	EB 253 11,444 268 0.068 30%	EB 337 17,737 327 0.107 29%	280 0.367 21%	15,447 220 0.05 20%	99,644 253 0.5 48%

Meter		wing	Mart als Plans	MMT ala ME Cimit Juni	368214		1997 - 19 19 19 19	Testidger Be	MES	MIN_INI	MIC/MIC Tellig_felt		LMT Cedatbrook		Spring Crank PS + 36295 DL_Net	eta Tutal_test	City Stats	CWSA Stats	Salisbury Stats	Emmau s Stats	South Whitehall Stats	Hanover	Upper Macungle	Aburtis	Macungie	Lower Macungle	WLSP Stats
Signatory	EB	UMT	UMT	UMT	UMT	UMT	UMT	UMT	Alburtis	Macungie	LMT	LMT	LMT	LMT	LMT	LMT	90,136	11,869	4,699	4,431	7,751	237	20,792	995	1,311	9,534	32,632
Parcels	367	1,751	945	1,375	521	4,362	9,513	2,325	995	1,311	778	973	663	505	1,547	5,070	288	132	50	49	93	3.9	137	9	17	151	314

Conclusions

- Older systems (City, Salisbury, and Emmaus) are generally leakiest sewers, but all Signatories have bad areas
- Western Lehigh municipalities have made good progress in I&I reductions, especially Macungie and Alburtis
- There is ~11 MGD of baseline infiltration that, if removed, can be turned into dry weather capacity
- Wet weather flow issues are driven by leaking sewers
- Wet weather overflows are driven by manhole cover inflows

No amount of I&I removal will eliminate need to expand the conveyance system, but it can reduce it considerably.

1. WLSP – Working Together

- Since 2009, the WLSP municipalities have been sharing strategies to reduce I&I, with good results!
- 2023 project will take collaboration to a new level:
 - LCA overall project management
 - Shared resources to address sewer laterals
 - Upper Macungie and Lower Macungie townships, plus LCA's Upper Milford system

2. City of Allentown – RFMS Commitments

- 2018 Regional Flow Management Strategy (RFMS) included City's commitment to complete specific projects to remove I&I from the City system
- RFMS submission resulted in Administrative Order (AO) being lifted by EPA
- Allentown Water & Sewer Lease holds the City responsible for AO expenses
- 2023 project is final phase of I&I projects outlined in the RFMS

Roles & responsibilities:

- City defines project
- LCA implements project
- City pays for project
- LCA collects project cost from customers through an "AO Fee"
- City pays debt service on AO bonds using revenues from LCA "AO Fee"

3. City of Allentown – NEW Source Reduction Program

- Using data from RDII analysis completed in 2022, new 10-year program developed
- I&I Source Reduction Program will be incorporated into Act 537 Plan
- Program goal is to reduce overall size/cost of large capital improvements
- Water & Sewer Lease (2020 Amendment) covers how I&I work will be handled after City's AO commitments are satisfied
- 2023 kickoff; Year 1 to be completed in 2024

Roles & responsibilities:

- City & LCA collaborate on project scope; City has final say on scope
- LCA implements and pays for project
- LCA contributes first \$650,000
- LCA collects remaining project cost through Capital Cost Recovery Charge applied to customer bills

<u>Note 1</u>: 10-Year Source Reduction Program cost estimate is \$50 million

<u>Note 2</u>: LCA and City collaborated on a \$10.4 million grant application to support Years 1-3 of this program. Decision on grant expected this summer.

Lehigh County Authority

Questions? Discussion

Next Up: Project Details

THANK YOU!